
A-AO9 103 aoYAL SIGNALS AND RADAR ESTABLISHMENT MALVERN (ENGLAND) F/S 9/0
POSER - A PROCESS ORGANISATION TO SIMPLIFY ERROR RECOVERY. (U)
.IAN B0 1 A MCOERMID

W.CLASSIFIED .5flEMMO-3249 ORIC-BR.72727 NL

* flfl lflfl lfl E A



* / BR72727

RSRE

MEMORANDUM No. 3249k

ROYAL SIGNALS & RADAR
o ESTABLISHMENT

POSER - A PROCESS ORGANISATION TO SIMPLIFY ERROR RECOVERY

Author: J A McDermid

DTlCSELECT
NOV2 5IW

PROCUREMENT EXECUTIVE,
z MINISTRY OF DEFENCE,

I RSRE MALVERN,
WORCS.

z
This dou ment is the property of Procuremen t Executive. Ilinistry of Delence.

0 ~Its contents ehould not be made public eitlier directly or indirectly without
I - 0 approval from HOU Secretary of State for Defence (Diretor AMl)

IcE. Wi
(Ma



ROYAL SIGNALS AND RADAR ESTABLISHMENT

Memorandum 3249 _

Date: It Jnap80o

-itle: - - A PROCESS ORGANISATION TO SIMPLIFY ERROR RECOVERY

Author j__J4 _jA Dermid .- -

SUMMARY

This memo, describes a process organisation which has been developed with

the aim of making automatic error recovery simpler than with conventional process

organisations. It gives a high level description of the processes and of the

channels (which provide the data communication). The memo, describes the more

important aspects of implementation, and indicates how POSER has been imple-

mented experimentally in a multi-computer simulation. The memo also briefly

describes the checkpointing and error recovery mechanisms which would be used
with POSER.

Accessic:2 Yior

NIIS C...i
D C TA

Ju7; -ic:t iof

vil- o 
dr

Dit, special

This memorandum is for advance information. It is not necessarily to be
regarded as a final or official statement by Procurement Executive. Ministry
of Defence

Copyright
C

Controller HMSO London

190



\o) Introduction

-- This memorandum describes a process organisation which is
proposed for use in the construction of fault - tolerant, real
- time computer systems. The background to this proposal is
outlined in (11. The organisation is conducive to automatic
checkpointing and error recovery. It is implementable on
distributed computer systems, and the application programmer
need not be aware whether processes to which he is
communicating are in the same computer or not.

The organisation comprises processes and channels which
are analagous (though not identicaIT'T-othose used by MASCOT
[21. No shared data areas (pools in MASCOT terminology) are
provided, and so communication between processes must be
achieved entirely by message passing via the channels. The
operation mode proposed is one of data flow at the highest
level (process and channel interactions). Essentially the
processes are conventional sequential programs. The channels
simply move data, provide buffering, and produce the required
process connectivity.

This organisation is advocated as it makes the causal
relations between the process and channel activations clear
and thus facilitates automatic checkpointing and (backward)
error recovery. The organisation may not yield very efficient
implementations of certain types of application, but the
efficiency has yet to be evaluated. The organisation as
described here has been implemented within a multi - computer
simulation in Algol68RT [3J,[41 and some attempt will be made
to instrument this simulation in order to try to measure
efficiency.

A--,
The process organisation is described here, primarily to

provoke comments and reaction, and any (constructive)
criticism will be welcomed.

11 High Level Description
1.0) Processes

A process is, in principle, a set of four objects (when
loaded):

Process Code
Own Data
Input Parameters
Output Parameters

The process code is a fairly conventional procedure which may
take parameters and deliver results. The own data is "long
lived" data which is preserved from one process activation to
the next. Normally the own data can only be accessed, and
hence changed, by the code with which it is associated. The
checkpointing and error recovery mechanisms provide exceptions
to this rule (see sections 3 and 4). The process is eligible
for running when (a suitable subset of) the i'put parameters

2



are available and the output parameter space is empty -i.e.

we are practising data flow at the process level. When a
process is scheduled the process code (a procedure) is called,
with the appropriate process parameters as its parameters, and
this (conceptually) executes until completion, delivering its
results into the output parameter space. This call - execution
- return sequence corresponds to one process activation.

1.1) Channels

The construction of channels is essentially the same as
that of processes. Channels are only permitted to move data,
not to modify it. This restriction can only be enforced by
programmer discipline in my simulation. This restriction could
be enforced in several ways, e.g. by providing additional
features to the application language (as has been done for
MASCOT), or by the operating system supplying (generic)
channels, as would be possible on FLEX [5].

1.2) General Considerations

The set of processes and channels which make up an
application system is considered to be fixed, although their
mapping onto the physical machine may vary with time. Thus an
application program in the proposed formalism corresponds to a
"frozen system" in MASCOT terminology. Since conventional
hardware and operating systems do not directly support the
proposed structure, additional software has to be provided to
achieve this. This additional software is described in the
following section.

2) Implementation
2.0) Data Flow

In order to achieve the effect of data flow at the process
and channel level, the operating system has to provide special
facilities. For processes and channels communicating within
one computer, or via some form of common store, the data
"movement" can be provided by mapping the appropriate part of
the output space of the sender on to the corresponding part of
the input space of the receiver. This achieves the data
passing, but the presence of the data stil has to be made
known to the scheduling mechansm (see section 2.1).

If the communicating objects are in different computers,
and there is no suitable common store, then the relevant parts
of their input and output spaces will be separate and the
operating systems are responsible for transmitting the data
between these data areas. The operating systems will use the
same process structure as the application system at this
interface, hence the transmission software will be made
eligible for scheduling by the presence of the data. The
receiver software, supplied by the operating system, will be
activated when the data arrives from the communication medium
(activation will probably be by means of an interrupt), and it
will pass the data into the input space of the receiving

3



process or channel.

The interfaces presented by the operating system software
are such that the application programmer need not be aware
that the communicating process and channel are in different
computers. This is obviously essential if the process and
channel mapping (distribution) can change in the lifetime of
the system.

2.1) Scheduling

There is, in effect, a scheduling condition associated
with each process and channel specifying which subsets of the
input data have to be present, and what output space has to be
free, in order that the process or channel may be run.
Obviously the set of processes and channels which can be run
at any time can be determined by comparing the state of the
input and output spaces of each process and channel with the
appropriate scheduling condition. Having established which
processes and channels can be run, the one to be run can be
selected by some algorithm which should try to be "fair".

The scheduling mechanism described above is essentially a
polling type of mechansim when implemented on a conventional
machine and is obviously rather inefficient. More efficient
scheduling mechanisms can be devised, and a considerable
improvement could be made even on conventional hardware.
However the greatest improvement in scheduling performance
could be achieved by providing special purpose hardware to
perform, or support, the data flow communication.

Since the main purpose of the simulation is to check
principles, rather than to consider problems of efficiency, it
uses a polling technique which is little more elegant than
that described above. The scheduling conditions are supplied
by providing a procedure for each process and channel which
evaluates the condition and delivers a boolean which is true
if the process or channel can be run, and false otherwise.

2.2) Practical Implementation

This section describes the implementation of the above
process structure as it is in the simulation. I would expect
the implementation to be very similar in a real system. Each
process runs within a "shell" which contains the scheduling
condition. The contents of the shell are supplied by the
application programmer, but the mode of the shell is
constrained by the system. The shell may be regarded as
providing the "virtual machine" necessary for process
execution and data flow, which the underlying machine does not
provide.

The process structure propsed could be implemented "on
top" of MASCOT by treating the process and channel shells as
MASCOT activities, and incorporating (essentially trivial)
MASCOT channels to perform the data flow between these
activities.

4



3) Checkpointing

3.0) The need for checkpointing

In order to recover from errors which may arise in a
system, and hence to tolerate the faults which caused them
(without losing any work), it is necessary to periodically
make copies of the states of the components in the system
which are essential to its operation. This process is known as
checkpointing. A rationale for checkpointing is developed in
[61, the most important point being that the checkpoints must
represent the (mechanistic) causal relations between events in
the system (process and channel activations). This is why a
process structure in which these relations are manifestly
obvious (due to the data flow operation) is advocated. The use
of pools in MASCOT whilst not actively obscuring these
relationships, does not (in the authors opinion) make them
sufficiently obvious.

3.1) Checkpointing Mechanisms

The desired checkpointing can be achieved by taking copies
of the data that flows down channels, and of the processes own
data between process activations. The checkpointing must be
partially performed from within the process and channel shells
(unless we introduce unconcscionable cheating to circumvent
scope rules). The operating system produces the actual
checkpoints, and manages (garbage collects etc.) the
checkpoints. The application system has to provide the data
for inclusion in the checkpoints. This provision of data
involves "unravelling" the own data (or changes to it) into a
form suitable for transput, and delivering it to the operating
system checkpointing procedures. This work is performed by a
procedure defined within the shell. Protocols have to be
provided to ensure the correct (consistent) generation of
checkpoints - these are described in [6].

4) Error Detection and Handling

4.0) General

In order that a system can be made fault - tolerant, and
that use can be made of checkpoints, errors which arise in the
system must be detected. This will be done by a mixture of
routining procedures and gross checks within the operating
system, and detection mechanisms incorporated within the
application system. These detection mechanisms must be
provided by the application programmer, since only he
understands the application, and hence only he can decide when
it is operating correctly or not. However the operating system
will provide facilities to assist the application programmer.
The checks performed by the operating system will not be
discussed here as they are not relevant to our current topic.

5



4 Error detection within a Process or Channel

The code for the processes and channels comprise
conventional sequential procedures. These procedures will be
block structured, and will, in general, consist of a hierarchy
of blocks. The error handling (often known as exception
handling) mechanisms are provided on a "per block" basis. Any
error detected within a block will invoke exception action to
try to complete the action of the block correctly. Success in
error handling should (normally) be undetectable at the block
above. Failure to handle the error will be reported to the
level above. It is not necessary to cater for errors at each
level in the hierarchy. If no error handler is supplied at any
particular level the error is passed up to the nearest level
in the hierarchy for which a handler is provided. This type of
hierarchical exception handling can be implemented in a number
of different ways:

by careful defensive programming in a conventional
programming language;
by use of special language facilities (and the implicit
support software) such as recovery blocks[7];
by use of a machine which supports these concepts, e.g.
FLEX [51;
by use of an appropriate language e.g. ADA [8].

If an error can not be handled within a process or channel it
will be reported to the process or channel shell.

4.2) Process Level Error Recovery

Recovery from errors which are passed to a shell will, in
general, affect more than one process and will require
cooperative action between the different operating systems.
Recovery will normally be achieved by restoring the state of
the system to one (which is hoped to be) prior to the
occurrence of the error. This technique is known as backward
error recovery and it can beimplemented using the checkpoints
established whilst the system was running normally. This type
of error recovery will not be discussed further here, but is
considered in some detail in [6].

5) Conclusions

POSER is advocated for a number of reasons. The data flow
operation makes checkpointing relatively easy, and makes the
causal relationships between the process and channel
activations clear. The structure allows relatively simple
reconfiguration, as there are no common data areas to
constrain the mapping of the processes and channels onto the
hardware.

The attributes of the structure from the points of view of
scheduling efficiency and ease of design of application
programs have not been evaluated, but are being considered.

6



Many optimisations of the scheduler are possible - for
example, only polling a process after the state of its
parameters has changed. However it is expected that the mostI. useful result of a study of the scheduling in POSER will be
the definiton of hardware support to the data flow mechanisms
which will make scheduling easy and fast.

The question of application program design is being
tackled by producing an example program to run on the
simulation. The program chosen is a model of an air defence
system which is fairly typical of real time programs, and 4
which is quite large (several thousands of lines of Algol 68).
A version of this program implemented using the MASCOT
philosophy is available so it will be possible to make some
qualiatative comparisons of the complete programs.

There are many practical problems associated with the
implementation of the proposed process structure, and more
particularly, with the error recovery mechanisms. Perhaps the
most fundamental problem is that of reducing the amount of
data which has to be stored in the checkpoints. These problems
will be considered as the development of the simulation
proceeds.

6) References

[1 Fault Tolerant Computing, RSRE Memorandum 3197, J A
McDermid, 1979.

[21 MASCOT a Modular Approach to Software Construction
Operation and Test, RRE Tech. Note 778, H R Simpson, K
Jackson, 1975.

[3] Algol 68R Users Guide, P M Woodward, S G Bond, HMSO, 1974.

(4) Parallel Processing and Simulation, P M Woodward, MOD
unpublished work, 1974.

[51 An Introduction to the FLEX Computer System, RSRE Report
No. 79016,J M Foster, C I Moir, I F Currie, J A McDermid,
P W Edwards, J D Morison, C H Pygott, 1979.

[61 Checkpointing and Error Recovery in Distributed Systems, J
A McDermid, RSRE Memorandum (to appear).

(71 Recovery Blocks in action: a system supporting high
reliability, Proc. Int. Conf. Software Engineering, San
Fransisco, 1976.

18] Preliminary ADA reference manual, J D Ichbiah et al, ACM
Sigplan Notices, Vol. 14 No. 6June 1979.

"References quoted are not
necessarily available".

7


